Part I: (60 Points/10 Points each) Problems 1-7: Ascertain whether the infinite series converges or diverges. You must include the test, show how the conditions) are met, run the test, and provide a conclusion. Please complete 6 out of the 7 problems. Be sure to write down your evil plans) or strategies; especially if you get stuck on a problem. Cross out the problem that you do not want graded.

1. $\sum_{n=1}^{\infty} \frac{(2 n)!}{n^{5}}$

Step 1: Identify the tests) and conditions (if applicable).
Ratio test. $a_{n}=\frac{(2 n)!}{n^{5}}$ is a series with nonzero terms.

Step 2: Run the test.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{[2(n+1)]!}{(n+1)^{5}} \cdot \frac{n^{5}}{(2 n)!}\right| \\
= & \lim _{n \rightarrow \infty}\left|\frac{(2 n+2)!n^{5}}{(n+1)^{5}(2 n)!}\right| \\
= & \lim _{n \rightarrow \infty}\left|\frac{(2 n+2)(2 n+1)(2 n)!n^{5}}{(n+1)^{5}(2 n)!}\right|
\end{aligned} \quad \square=\infty
$$

Step 3: Conclusion.
$\sum_{n=0}^{\infty} \frac{(2 n)!}{n^{5}}$ diverges by the Ratio test.
2. $\sum_{n=4}^{\infty} \frac{(-1)^{n} n}{n-3}$

Step 1: Identify the tests) and conditions (if applicable).
Alternating series test.

$$
a_{n}=\frac{n}{n-3}
$$

Step 2: Run the test.

$$
\lim _{n \rightarrow \infty} \frac{n}{n-3}=1
$$

Step 3: Conclusion.
$\sum_{n=4}^{\infty} \frac{(-1)^{n}}{n-3}$ diverges by the nth term test for divergence.
3. $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^{3}+3 n}}$

Step 1: Identify the tests) and conditions (if applicable).
Limit comparison test

$$
a_{n}=\frac{n}{\sqrt{n^{3}+3 n}}>0, \quad b_{n}=\frac{n}{\sqrt{n^{3}}}=\frac{n}{n^{3 / 2}}=\frac{1}{n^{1 / 2}}>0
$$

Step 2: Run the test.

$$
\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n^{3}+3 n}} \cdot \frac{n^{1 / 2}}{1} \left\lvert\, \begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{n^{1 / 2}} \text { is a divergent } p \text {-series } \\
& {[p=1 / 2] .}
\end{aligned}\right.
$$

$$
=\lim _{n \rightarrow \infty} \frac{n^{3 / 2}}{\sqrt{n^{3}+3 n}}
$$

$=1$ which is finite \& positive.

Step 3: Conclusion.
$\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^{3}+3 n}}$ diverges by the limit comparison test.
4. $\sum_{n=1}^{\infty} \frac{\ln n}{n}$

Step 1: Identify the tests) and conditions (if applicable).
Integral Test. Let $f(x)=\frac{\ln x}{x}$. f is continuous on $[1, \infty)$, and positive on $[2, \infty)$.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(\frac{1}{x}\right) x-(\ln x)(1)}{x^{2}} \text { so } f^{\prime}(x)>0 \text { on }[3, \infty) . \\
f^{\prime}(x) & =\frac{1-\ln x}{x^{2}} \\
1-\ln x & =0 \\
1 & =\ln x \\
x & =e^{\prime}=e
\end{aligned}
$$

Step 2: Run the test.

$$
\begin{aligned}
\int_{1}^{\infty} \frac{\ln x}{x} d x & =\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{\ln x}{x} d x \\
& =\left.\lim _{b \rightarrow \infty} \frac{1}{2}(\ln x)^{2}\right|_{x=1} ^{x=b} \\
& =\frac{1}{2} \lim _{b \rightarrow \infty}\left[(\ln b)^{2}-(\ln 1)^{2}\right] \\
& =\frac{1}{2}(\infty-0) \\
& =\infty \rightarrow \text { diverges }
\end{aligned}
$$

Step 3: Conclusion.
$\sum_{n=1}^{\infty} \frac{1 n}{n}$ diverges by the integral test.
5. $\sum_{n=1}^{\infty}\left(\frac{4 n}{7 n-1}\right)^{n}$

Step 1: Identify the tests) and conditions (if applicable).
Root test. $\sum_{n=1}^{\infty}\left(\frac{4 n}{7 n-1}\right)^{n}$ is a series.

Step 2: Run the test.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\sqrt[n]{\left(\frac{4 n}{7 n-1}\right)^{n}}\right| \quad \square=\frac{4}{7}<1 \\
= & \lim _{n \rightarrow \infty}\left|\frac{4 n}{7 n-1}\right|
\end{aligned}
$$

Step 3: Conclusion.
$\sum_{n=1}^{\infty}\left(\frac{4 n}{7 n-1}\right)^{n}$ converges by the root test.
6. $\sum_{n=1}^{\infty}(\sqrt{e})^{n}$

Step 1: Identify the tests) and conditions (if applicable).

$$
\sqrt{e} \approx 1.65
$$

Step 2: Run the test.

$$
N / A
$$

Step 3: Conclusion.
$\sum_{n=1}^{\infty}(\sqrt{e})^{n}$ is a divergent geometric series $[|r|=|\sqrt{e}| \pi \mid .65]$.
7. $\sum_{n=1}^{\infty} \frac{2^{n}}{3^{n}-1}$

DCT wont work
Step 1: Identify the tests) and conditions (if applicable).
Limit comparison test

$$
\begin{aligned}
& a_{n}=\frac{2^{n}}{3^{n}-1}>0 \\
& b_{n}=\frac{2^{n}}{3^{n}}>0
\end{aligned}
$$

$$
\begin{aligned}
& b_{n}=\frac{2^{n}}{3^{n}} \quad a_{n}=\frac{2^{n}}{3^{n}-1} \\
& a_{1}=\frac{2}{2}=b_{1}=\frac{2}{3} \\
& a_{2}=\frac{4}{8}>b_{2}=\frac{4}{9}
\end{aligned}
$$

Step 2: Run the test.
$\lim _{n \rightarrow \infty}\left[\frac{2^{n}}{3^{n}-1} \cdot \frac{3^{n}}{2^{n}}\right] \quad \rightarrow \begin{aligned} & =1 \\ & \text { which is finite and positive. } \\ & \infty 2^{n} \quad \infty\end{aligned}$

$$
=\lim _{n \rightarrow \infty} \frac{3^{n}}{3^{n}-1}
$$

$$
=\lim _{n \rightarrow \infty} \frac{(\ln 3) \cdot 3^{n}}{(\ln 3) 3^{n}}
$$

$\sum_{n=1}^{\infty} \frac{2^{n}}{3^{n}}=\sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n}$ is a convergent geometric series $\left[|r|=\left|\frac{2}{3}\right|<1\right]$.

Step 3: Conclusion.
$\sum_{n=1}^{\infty} \frac{2^{n}}{3^{n}-1}$ converges by the limit comparison test.

Part II: (30 points/10 points each) Problems 8-10. Complete the following problems.
8. Evaluate the definite integral and determine whether it converges or diverges.

$$
\begin{aligned}
& \begin{array}{c}
\operatorname{cosin} \int_{2}^{2} \int_{-2}^{2} \frac{1}{x} d x=\int_{-2}^{0} \frac{d x}{x}+\int_{0}^{2} \frac{d x}{x} \\
\int_{0} \frac{d x}{x}
\end{array} \\
& \int_{0}^{2} \frac{d x}{x} \\
& =\lim _{a \rightarrow 0^{+}} \int_{a}^{2} \frac{d x}{x} \\
& =\lim _{a \rightarrow 0^{+}}\left(\left.\ln |x|\right|_{x=a} ^{x=2}\right. \\
& =\lim _{a \rightarrow 0^{+}}[\ln |z|-\ln |a|] \\
& =[\ln 2-\infty] \\
& =-\infty \int_{-2}^{\int_{0}} \frac{\int_{-2} \frac{d x}{x} \text { diverges. }}{2}
\end{aligned}
$$

9. Find the sum of the convergent series.

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left[\left(\frac{4}{5}\right)^{n}-\frac{1}{(n+1)(n+2)}\right] \\
= & \sum_{n=1}^{\infty}\left(\frac{4}{5}\right)^{n}-\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)} \\
= & 4-\frac{1}{2} \\
= & \frac{7}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
\frac{1}{(n+1)(n+2)}=\frac{A}{n+1}+\frac{B}{n+2}=\frac{1}{n+1}-\frac{1}{n+2} \\
1=A n+2 A+B n+B
\end{array} \\
& 0 n+1=(A+B) n+(2 A+B) \\
& A+B=0 \rightarrow A=-B \\
& 2 A+B=1 \rightarrow 2(-B)+B=1 \\
& -B=1 \\
& B=-1 \\
& \quad A=-(-1)=1 \\
& \sum_{n=1}^{\infty}\left[\frac{1}{n+1}-\frac{1}{n+2}\right] \quad \\
& =\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{A}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+\cdots \\
& =\frac{1}{2}+\lim _{n \rightarrow \infty} a_{n+1} \\
& =\frac{1}{2}+\lim _{n \rightarrow \infty}\left[\frac{1}{n+1+1}-\frac{1}{n+1+2}\right] \\
& =\frac{1}{2}+\lim _{n \rightarrow \infty}\left[\frac{1}{n+2}-\frac{1}{n+3}\right] \\
& =\frac{1}{2}+0 \\
& =\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left(\frac{4}{5}\right)^{n} & =\sum_{n=0}^{\infty}\left(\frac{4}{5}\right)^{n}-\left(\frac{4}{5}\right)^{0} \\
& =\frac{1}{1-\frac{4}{5}}-1 \\
& =\frac{1}{\frac{1}{5}}-1 \\
& =4
\end{aligned}
$$

10. Determine whether the series converges absolutely or conditionally, or diverges.

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{\cos (n \pi)}{\sqrt{n}}=\frac{\cos \pi}{\sqrt{1}}+\frac{\cos 2 \pi}{\sqrt{2}}+\frac{\cos 3 \pi}{\sqrt{3}}+\frac{\cos 4 \pi}{\sqrt{4}}+\ldots \\
& =\frac{-1}{\sqrt{1}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+\cdots \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}} \\
& \sum_{n=1}^{\infty}\left|\frac{\cos n \pi}{\sqrt{n}}\right|=\sum_{n=1}^{\infty}\left|\frac{(-1)^{n}}{\sqrt{n}}\right|=\sum_{n=1}^{\infty} \frac{1}{n^{1 / 2}} \quad \text { which is a divergent } \\
& \left.\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}} \text { converges by the AST 1) } \lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0 / 2\right) \frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}} \text { for all } n \text {. } \\
& \text { So } \sum_{n=1}^{\infty} \frac{\cos n \pi}{\sqrt{n}} \text { is conditionally convergent. }
\end{aligned}
$$

Part II: (10 points/2 points each) Problems 11-15. True or False.
11. T If $\lim _{n \rightarrow \infty} a_{n}=0, \sum_{n=1}^{\infty} a_{n}$ converges.
12. T F If $0<a_{n} \leq b_{n}$, and $\sum_{n=1}^{\infty} a_{n}$ converges, then $\sum_{n=1}^{\infty} b_{n}$ converges.
13. T F If $\left\{a_{n}\right\}$ is bounded and monotonic, $\left\{a_{n}\right\}$ converges.
14. T The nth Term Test may be used to show convergence.
15. T F If $\sum_{n=1}^{\infty} a_{n}$ converges and has a sum of 3 and $\sum_{n=1}^{\infty} b_{n}$ converges and has a sum of $5, \sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ will also converge and have a sum of 8 .

